How can asking for a change in commutator riser style save you time on your next rewind?

By giving your winder the style that works best for personal preference... and by knowing where you can safely make changes, and where you can't. Inserted risers come in many different styles... from open, to closed, to straight blade, and with a large number of foldover configurations.

Different winders have different preferences, and generally speaking, risers can be designed to meet those preferences; as long as the overall material remains the same for current carrying capacity and stability in operation.

When working with foldover tabs, the biggest challenge can be in placing the coils. Though it may seem that the top coil should fall entirely between the two sides of the riser, in fact, the short side of the riser should come only halfway up the top coil. This original OEM design may cause problems in aftermarket rewinding, since you'll end up working with a very small amount of the long side of the risers which can be difficult to bend.

The solution? Have your commutator manufacturer make an adjustment to the design. Some of the conversions available (shown below), may fit better within your winders' preferred work scope and may save time in the rewind as a result. Also, if you choose to stay with a full foldover, you can always instruct your comm manufacturer to increase the length of the long side of the riser to make it easier to bend.

Should you change riser material thickness?
Not if it means going thinner. By going from 0.060" to 0.040", you reduce the current carrying capacity of the copper, and also reduce the strength of the material. However, the reverse (0.040" to 0.060" is typically possible, and it is also possible to convert from a double inserted riser of 0.040" material to a single inserted riser of 0.093".

Can I do anything to stop inserted risers from cracking in operation?
Riser cracking is typically due to one of two causes. Vibration can be addressed in some cases by adding a row of lashing to help minimize the effect. Hydrogen embrittlement is seen in copper which contains oxygen. Over time, it will react with the hydrogen in the air and cause the copper to become brittle and crack. Using Oxygen-free copper for inserted risers will solve this problem, and should be specified for virtually all inserted riser commutators.

When is reinsulating a comm an option?

Usually if it has inserted risers, is a v-ring style commutator, and uses over 1000 pounds of copper. 

There are, of course exceptions to this. If the commutator doesn't use quite that much copper, but it has a very thick or very wide copper bar, reinsulating may still be a great cost saving alternative.

What is replaced in a reinsulated commutator?
Typically, reinsulation refers to the replacement of segment mica between the bars, and replacement of the mica v-rings and mica tube. It should also include new risers, and any 
peripherals like lashing or wrapped caps.

Why would you want to reinsulate instead of refill?
Cost. Reinsulating a commutator typically doesn't save any labor hours, since each bar has to be cleaned thoroughly before re-use. However, if the comm uses a significant amount of copper, the material savings can quickly amount to several thousand dollars. On a smaller comm, however the material savings would be quickly outweighed by the disadvantages of reinsulating.

When shouldn't you reinsulate a commutator?
When there is limited brush life left, and when the copper is damaged in some way.
If the copper has been overheated and annealed, it will no longer be re-usable. If the dovetails have been bent or cracked, a refill will be necessary. Finally, if there is insufficient flat on the interior of the comm to allow for removal of copper for reassembly, reinsulation would not be

How can you tell if reinsulating is possible?
For thorough inspection and final determination, the commutator will have to be entirely disassembled. While an external inspection will show the condition of the bars and the amount of brush life left, inspecting the dovetails and copper hardness requires individual bar inspection.

Can you reinsulate a solid riser comm?
Not typically, and not cost effectively. Solid riser comms are slotted, and the slots would need to be plugged to withstand the new compression for reassembly and subsequent machining. In addition, in reinsulating, in order to maintain brush diameter, mica thickness is increased. On a solid riser comm, this would also increase the riser diameter, and would change the slot depth and position.

What about glassbound commutators?
Glassbound comms are a totally different design. Since the copper shrinks to a mica wrapped hub, any additional removal of material would adversely affect the fit. In addition, once grooved for banding, the copper material remaining under the band is very thin, and unlikely to withstand compression.

Options for repairing broken commutator risers

If the risers are broken at the brush track or only slightly beyond, your options are severely limited.


Inserting new risers is not a viable option, since the heat required to braze the new riser in place would quickly burn and destroy the segment mica between the bars. Soldering is also not recommended, due to the likelihood of contamination of the segment insulation. In addition, solder will rarely withstand the operating temperature requirements of the unit.

T.I.G. welding extensions is not an option due to the small amount of riser material remaining attached to the comm. In this situation, there are typically two possible options remaining for repairing the problem:

Refilling the commutator - involves reusing the steel core, but manufacturing new copper, risers, and insulation. Reinsulating the commutator - involves reusing the steel core, and the copper bars (on large units), replacing the risers and insulation. Note: reinsulation is not typically an option for glassband commutators, which we will address in a future issue of Motor Fax.

If the break is further along the riser, the repair is much less complicated.

T.I.G. welding extensions is a good solution to this problem, assuming that the commutator is otherwise in good condition and that there is still substantial brush life left on the unit. To effectively perform this repair, the risers need to be thoroughly cleaned, removing all carbon contamination.

New risers should be fabricated from the same material used in the original unit. This is typically half hard, oxygen-free copper, in thicknesses ranging from 0.020" to 0.125". Riser extensions should be bent prior to installation, allowing 0.002" in width and 0.312" in depth greater than coil sizes for easy coil installation.

For recurring problems with cracked risers due to vibration, you may want to consider adding a row of lashing to help minimize this effect.

Shown below are some of the more common riser styles, to help in your identification.